ESTUDIO HIDROLÓGICO PROYECTO PLANTA DE COMPOSTA PROPIEDAD DE MARCELINO GONZÁLEZ VÁZQUEZ

CAMINO A LA PURISIMA, ATOTONILCO EL ALTO JALISCO

CONTENIDO

Objetivo	
Ubicación del proyecto	
Vías de comunicación	
Actividades colindantes.	04
Naturaleza del proyecto	05
Localización de región hidrológica	
Precipitación media anual	
Hidrografía	14
Cuenca hidrológica del municipio	
Disponibilidad de agua superficial	17
Agua subterránea	18
Disponibilidad de aguas subterráneas	20
Selección del tiempo de retorno	21
Dirección de los flujos superficiales pluviales	26
Cálculo de infiltración	28
Perfil de los escurrimientos	29
Conclusiones	
Recomendaciones	32
Anexos	

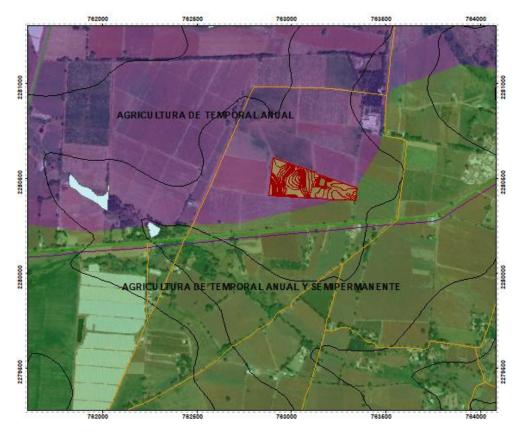
Objetivo.

La finalidad principal del presente estudio es la de realizar un análisis de las condiciones hidrológicas del predio en estudio, así como de determinar los caudales de diseño asociados a diferentes periodos de retorno.

El presente estudio es elaborado con apego a los lineamientos dictaminados por la Comisión Nacional del Agua, que en la República Mexicana es el organismo encargado de administrar, regular, controlar y proteger las aguas nacionales del país.

Ubicación del proyecto

El proyecto se denomina Planta de Composta propiedad del señor Marcelino González Vázquez ubicado en la localidad de La Purísima predio rustico denominado "El Centro potrero de Rosalba" ubicado en el municipio de Atotonilco El Alto, Jalisco.



Plano de localización de proyección INEGI 2023

Vías de comunicación.

El sitio de proyecto colinda 150 metros al sur con el camino principal a la localidad de La Purísima además de contar con caminos secundarios a 150 metros al Este y Oeste del sitio y aproximadamente a 1.3 km hacia el oeste se ubica la carretera federal Atotonilco el Alto – Arandas.

El sitio de proyecto se ubica a 700 metros al oeste de la zona urbana de la localidad de La Purísima por lo que se cuenta con todos los servicios básicos de agua y luz.

Actividades colindantes imagen SIG 2023.

Actividades colindantes.

Las actividades que se desarrollan en el predio y en los colindantes en un radio de 200 metros son las siguientes:

- Al Norte colinda con predios de agricultura de temporal.
- Al Noroeste con predios de agricultura de temporal y planta de Tequila.
- Al Oeste con predios de agricultura de temporal.
- Al Sur con predios de agricultura de temporal y camino a la localidad de La Purísima.
- Al Suroeste predios de agricultura de temporal y camino a la localidad de La Purísima.
- Al Oeste con predios de agricultura de temporal.
- Al Sureste con predios de agricultura de temporal.
- Al Este predios de agricultura y localidad de La Purísima.

Naturaleza del proyecto

Los residuos de manejo especial como son las excretas el bagazo, vinaza, enter otros residuos no tratados constituye un importante reservorio de contaminantes, al situarse entre las principales fuentes de contaminación de mantos freáticos y del suelo. Los residuos manejados en forma inadecuada pueden causar problemas ambientales, y en México aún no han sido considerados como subproductos susceptibles de aprovechamiento.

Las actividades agropecuarias la producción de tequila y azúcar son de las principales actividades productivas del estado, constituyéndose en un importante reservorio de contaminantes de mantos freáticos y del suelo al ocasionar un aumento en la concentración de nitratos (N-NO3).

Esta realidad implica un enorme daño al ambiente, o desde otra perspectiva, una potencial industria novedosa y de gran aplicación, si se toma en cuenta que contienen una gran proporción de nutrientes ingeridos por el animal; los cuales, pueden representar una fuente potencial de nutrientes disponibles para las plantas cuando son reciclados mediante el compostaje.

El compostaje es una transformación microbiana de los residuos orgánicos en condiciones controladas. Los abonos orgánicos pueden satisfacer la demanda de nutrientes de los cultivos, reduciendo significativamente el uso de fertilizantes químicos y mejorando las características de los vegetales consumidos, además, los abonos orgánicos mejoran las características de suelos que han sido deteriorados por el uso excesivo de agro-químicos y su sobre-explotación. Sin embargo, su composición química, el aporte de nutrientes a los cultivos y su efecto en el suelo, varía según su procedencia, edad, manejo y contenido de humedad (FAO 1991).

La construcción de esta planta de composta tiene como finalidad el aprovechamiento de un residuo de manejo especial en composta de acuerdo a las Normas Estatales Ambientales, y obtener con ello un beneficio y una reducción del impacto al ambiente que representaría el depósito de excreta a suelo agrícola sin previo tratamiento, por lo que se contempla una vida útil del proyecto no menor a los 90 años, pero de ser necesario se contemplan las siguientes acciones para su abandono.

- Se retirará la maquinaria y equipos presentes en el sitio.
- Se retirará todo el material composteadora y dispuesto en predio propios de la empresa y el resto se utilizará en la misma planta de composta.
- Se extraerá el material compactado en su totalidad y se eliminará la fosa de aguas pluviales y lixiviados de composta.
- Se retirará la capa de material impermeabilizante.
- Se rellenará con material propio de la composta como mejorador de suelo agrícola.
- Se le dará el uso inicial al predio como parcela de siembra de temporal.

Uno de los problemas ambientales de las explotaciones agrícolas son los residuos orgánicos que se generan (restos de poda, de cosecha, de post-cosecha, estiércol, pasto, fruta caída, entre otros). Normalmente, debido al desconocimiento, a la falta de un espacio adecuado, o de tiempo, las prácticas habituales con estos residuos son la quema, el enterramiento o el abandono del material a la intemperie hasta su pudrición.

El compostaje proporciona la posibilidad de transformar de una manera segura los residuos orgánicos en insumos para la producción agrícola. La FAO define como compostaje a la mezcla de materia orgánica

en descomposición en condiciones aeróbicas que se emplea para mejorar la estructura del suelo y proporcionar nutrientes.

Sin embargo, no todos los materiales que han sido transformados aeróbicamente, son considerados compost. El proceso de compostaje incluye diferentes etapas que deben cumplirse para obtener compost de calidad. La utilización de un material que no haya finalizado correctamente el proceso de compostaje puede acarrear riesgos como:

- Fitotoxicidad. En un material que no haya terminado el proceso de compostaje correctamente, el nitrógeno está más en forma de amonio en lugar de nitrato. El amonio en condiciones de calor y humedad se transforma en amoniaco, creando un medio tóxico para el crecimiento de la planta y dando lugar a malos olores. Igualmente, un material sin terminar de compostar contiene compuestos químicos inestables como ácidos orgánicos que resultan tóxicos para las semillas y plantas.
- Bloqueo biológico del nitrógeno, también conocido como "hambre de nitrógeno". Ocurre en materiales que no han llegado a una relación Carbono: Nitrógeno equilibrada, y que tienen material mucho más rico en carbono que en nitrógeno. Cuando se aplica al suelo, los microorganismos consumen el C presente en el material, y rápidamente incrementan el consumo de N, agotando las reservas de N en el suelo.
- Reducción de oxígeno radicular. Cuando se aplica al suelo un material que aún está en fase de descomposición, los microorganismos utilizarán el oxígeno presente en el suelo para continuar con el proceso, agotándolo y no dejándolo disponible para las plantas.
- Exceso de amonio y nitratos en las plantas y contaminación de fuentes de agua. Un material con exceso de nitrógeno en forma de amonio, tiende a perderlo por infiltración en el suelo o volatilización y contribuye a la contaminación de aguas superficiales y subterráneas. Igualmente, puede ser extraído por las plantas del cultivo, generando una acumulación excesiva de nitratos, con consecuencias negativas sobre la calidad del fruto (ablandamiento, bajo tiempo postcosecha) y la salud humana (sobre todo en las hortalizas de hoja).

Fases del compostaje.

El compostaje es un proceso biológico, que ocurre en condiciones aeróbicas (presencia de oxígeno). Con la adecuada humedad y temperatura, se asegura una transformación higiénica de los restos orgánicos en un material homogéneo y asimilable por las plantas.

Es posible interpretar el compostaje como el sumatorio de procesos metabólicos complejos realizados por parte de diferentes microorganismos, que, en presencia de oxígeno, aprovechan el nitrógeno (N) y el carbono (C) presentes para producir su propia biomasa. En este proceso, adicionalmente, los microorganismos generan calor y un sustrato sólido, con menos C y N, pero más estable, que es llamado compost.

Al descomponer el C, el N y toda la materia orgánica inicial, los microorganismos desprenden calor medible a través de las variaciones de temperatura a lo largo del tiempo. Según la temperatura generada durante el proceso, se reconocen tres etapas principales en un compostaje, además de una etapa de maduración de duración variable. Las diferentes fases del compostaje se dividen según la temperatura, en:

1. Fase Mesófila. El material de partida comienza el proceso de compostaje a temperatura ambiente y en pocos días (e incluso en horas), la temperatura aumenta hasta los 45°C. Este aumento de temperatura es debido a actividad microbiana, ya que en esta fase los microorganismos utilizan las fuentes sencillas de C y N generando calor. La descomposición de compuestos solubles, como azúcares, produce ácidos

orgánicos y, por tanto, el pH puede bajar (hasta cerca de 4.0 o 4.5). Esta fase dura pocos días (entre dos y ocho días).

2. Fase Termófila o de Higienización. Cuando el material alcanza temperaturas mayores que los 45°C, los microorganismos que se desarrollan a temperaturas medias (microorganismos mesófilos) son reemplazados por aquellos que crecen a mayores temperaturas, en su mayoría bacterias (bacterias termófilas), que actúan facilitando la degradación de fuentes más complejas de C, como la celulosa y la lignina.

Estos microorganismos actúan transformando el nitrógeno en amoníaco por lo que el pH del medio sube. En especial, a partir de los 60°C aparecen las bacterias que producen esporas y actino bacterias, que son las encargadas de descomponer las ceras, hemicelulosas y otros compuestos de C complejos.

Esta fase puede durar desde unos días hasta meses, según el material de partida, las condiciones climáticas y del lugar, y otros factores. Esta fase también recibe el nombre de fase de higienización ya que el calor generado destruye bacterias y contaminantes de origen fecal como Eschericha coli y Salmonella spp. Igualmente, esta fase es importante pues las temperaturas por encima de los 55°C eliminan los quistes y huevos de helminto, esporas de hongos fitopatógenos y semillas de malezas que pueden encontrarse en el material de partida, dando lugar a un producto higienizado.

- 3. Fase de Enfriamiento o Mesófila II. Agotadas las fuentes de carbono y, en especial el nitrógeno en el material en compostaje, la temperatura desciende nuevamente hasta los 40-45°C. Durante esta fase, continúa la degradación de polímeros como la celulosa, y aparecen algunos hongos visibles a simple vista. Al bajar de 40 °C, los organismos mesófilos reinician su actividad y el pH del medio desciende levemente, aunque en general el pH se mantiene ligeramente alcalino. Esta fase de enfriamiento requiere de varias semanas y puede confundirse con la fase de maduración.
- **4. Fase de Maduración**. Es un período que demora meses a temperatura ambiente, durante los cuales se producen reacciones secundarias de condensación y polimerización de compuestos carbonados para la formación de ácidos húmicos y fúlvicos.

Monitoreo durante el compostaje

Ya que el compostaje es un proceso biológico llevado a cabo por microorganismos, se deben tener en cuenta los parámetros que afectan su crecimiento y reproducción. Estos factores incluyen el oxígeno o aireación, la humedad de substrato, temperatura, pH y la relación C: N.

Externamente, el proceso de compostaje dependerá en gran medida de las condiciones ambientales, el método utilizado, las materias primas empleadas, y otros elementos, por lo que algunos parámetros pueden variar. No obstante, éstos deben estar bajo vigilancia constante para que siempre estén siempre dentro de un rango óptimo. A continuación, se señalan los parámetros y sus rangos óptimos.

Oxigeno.

El compostaje es un proceso aerobio y se debe mantener una aireación adecuada para permitir la respiración de los microorganismos, liberando a su vez, dióxido de carbono (CO2) a la atmosfera. Así mismo, la aireación evita que el material se compacte o se encharque. Las necesidades de oxígeno varían durante el proceso, alcanzando la mayor tasa de consumo durante la fase termofílica.

La saturación de oxígeno en el medio no debe bajar del 5%, siendo el nivel óptimo el 10%. Un exceso de aireación provocaría el descenso de temperatura y una mayor pérdida de la humedad por evaporación, haciendo que el proceso de descomposición se detenga por falta de agua. Las células de los microorganismos se deshidratan, algunos producen esporas y se detiene la actividad enzimática

encargada de la degradación de los diferentes compuestos. Por el contrario, una baja aireación, impide la suficiente evaporación de agua, generando exceso de humedad y un ambiente de anaerobiosis. Se producen entonces malos olores y acidez por la presencia de compuestos como el ácido acético, ácido sulfhídrico (H2S) o metano (CH4) en exceso.

CONTROL DE LA AIREACIÓN			
Porcentaje de aireación		Problema	Soluciones
<5%	Baja aireación	Insuficiente evaporación de agua, generando exceso de humedad y un ambiente de anaerobiosis	Volteo de la mezcla y/o adición de material estructurante que permita la aireación
5% - 15% Rango ideal			
>15%	Exceso de aireación	Descenso de temperatura y evaporación del agua, haciendo que el proceso de descomposición se detenga por falta de agua.	Picado del material a fin de reducir el tamaño de poro y así reducir la aireación. Se debe regular la humedad, bien proporcionando agua al material o añadiendo material fresco con mayor contenido de agua (restos de fruta y verduras, césped, purines u otros)

Dióxido de Carbono (CO2)

Como en todo proceso aerobio o aeróbico, ya sea en el compostaje o aun en la respiración humana, el oxígeno sirve para transformar (oxidar) el C presente en las materias primas (substrato o alimentos) en combustible. A través del proceso de oxidación, el C se transforma en biomasa (más microorganismos) y dióxido de carbono (CO2), o gas producido por la respiración, que es fuente de carbono para las plantas y otros organismos que hacen fotosíntesis. Sin embargo, el CO2 también es un gas de efecto invernadero, es decir, contribuye al cambio climático.

Durante el compostaje, el CO2 se libera por acción de la respiración de los microorganismos y, por tanto, la concentración varía con la actividad microbiana y con la materia prima utilizada como sustrato. En general, pueden generarse 2 a 3 kilos de CO2 por cada tonelada, diariamente. El CO2 producido durante el proceso de compostaje, en general es considerado de bajo impacto ambiental, por cuanto es capturado por las plantas para realizar fotosíntesis.

Humedad

La humedad es un parámetro estrechamente vinculado a los microorganismos, ya que, como todos los seres vivos, usan el agua como medio de transporte de los nutrientes y elementos energéticos a través de la membrana celular.

La humedad óptima para el compost se sitúa alrededor del 55%, aunque varía dependiendo del estado físico y tamaño de las partículas, así como del sistema empleado para realizar el compostaje (ver sección sobre Tamaño de Partícula). Si la humedad baja por debajo de 45%, disminuye la actividad microbiana, sin dar tiempo a que se completen todas las fases de degradación, causando que el producto obtenido sea biológicamente inestable. Si la humedad es demasiado alta (>60%) el agua saturará los poros e interferirá la oxigenación del material.

En procesos en que los principales componentes sean substratos tales como aserrín, astillas de madera, paja y hojas secas, la necesidad de riego durante el compostaje es mayor que en los materiales más húmedos, como residuos de cocina, hortalizas, frutas y cortes de césped.

El rango óptimo de humedad para compostaje es del 45% al 60% de agua en peso de material base.

PARAMETROS DE HUMEDAD ÓPTIMOS					
Porcentaje de humedad		Problema	Soluciones		
<45%	Humedad insuficiente	Puede detener el proceso de compostaje por falta de agua para los microorganismos	Se debe regular la humedad, ya sea proporcionando agua al material o añadiendo material fresco con mayor contenido de agua (restos de fruta y verduras, césped, purines u otros)		
	45% - 60% Rango ideal				
>60%	Oxígeno insuficiente	Material muy húmedo, el oxígeno queda desplazado. Puede dar lugar a zonas de anaerobiosis.	Volteo de la mezcla y/o adición de material con bajo contenido de humedad y con alto valor en carbono, como serrines, paja u hojas secas.		

Temperatura

La temperatura tiene un amplio rango de variación en función de la fase del proceso.

El compostaje inicia a temperatura ambiente y puede subir hasta los 65°C sin necesidad de ninguna actividad antrópica (calentamiento externo), para llegar nuevamente durante la fase de maduración a una temperatura ambiente.

Es deseable que la temperatura no decaiga demasiado rápido, ya que, a mayor temperatura y tiempo, mayor es la velocidad de descomposición y mayor higienización.

PARAMETROS DE TEMPERATURA ÓPTIMOS			
Temperatura (°C)		Problema	Soluciones
Bajas temperaturas (T°C. ambiente <35°C)	Humedad insuficiente	darse por variosfactores, como la falta de humedad, por lo que los microorganismos disminuyen la	Humedecer el material o añadir material fresco con mayor porcentaje de humedad (restos de fruta y verduras, u otros)
	Material Insuficiente	Insuficiente material o forma de la pila inadecuada para que alcance una temperatura adecuada.	Añadir más material a la pila de compostaje.

	icit de ógeno o a C: N.	relación C: N y, por lo tanto,	Añadir material con alto contenido en nitrógeno como estiércol.
hum	ntilación y nedad Ificiente	La temperatura es demasiado alta y se inhibe el proceso de descomposición. Se mantiene actividad microbiana pero no la suficiente para activar a los microorganismos mesofílicos y facilitar la terminación del proceso.	humedad (55-60%). Adición de material con alto contenido en carbono de lenta degradación (madera, o pasto seco) para que

Ph

El pH del compostaje depende de los materiales de origen y varía en cada fase del proceso (desde 4.5 a 8.5). En los primeros estadios del proceso, el pH se acidifica por la formación de ácidos orgánicos. En la fase termófila, debido a la conversión del amonio en amoniaco, el pH sube y se alcaliniza el medio, para finalmente estabilizarse en valores cercanos al neutro.

El pH define la supervivencia de los microorganismos y cada grupo tiene pH óptimos de crecimiento y multiplicación. La mayor actividad bacteriana se produce a pH 6,0-7,5, mientras que la mayor actividad fúngica se produce a pH 5,5-8,0. El rango ideal es de 5,8 a 7,2.

PARAMETROS DE pH ÓPTIMOS			
рН		Problema	Soluciones
<4,5	Exceso de ácidos orgánicos	Los materiales vegetales como restos de cocina, frutas, liberan muchos ácidos orgánicos y tienden a acidificar el medio	Adición de material rico en nitrógeno hasta conseguir una adecuada relación C: N.
4,5 - 8,5 Rango ideal			
>8,5	Exceso de nitrógeno	con una deficiente relación C: N,	Adición de material más seco y con mayor contenido en carbono (restos de poda, hojas secas, aserrín)

Relación Carbono-Nitrógeno (C: N)

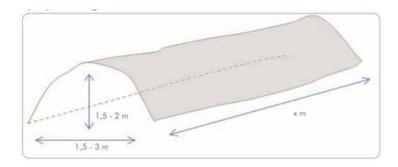
La relación C: N varía en función del material de partida y se obtiene la relación numérica al dividir el contenido de C (%C total) sobre el contenido de N total (%N total) de los materiales a compostar.

Esta relación también varía a lo largo del proceso, siendo una reducción continua, desde 35:1 a 15:1.

PARAMETROS DE RELACIÓN CARBONO / NITROGENO				
Porcentaje de humedad	Causas Asociadas		Soluciones	
>35:1	Exceso de Carbono	cantidad de materiales ricos	Adición de material rico en nitrógeno hasta conseguir una adecuada relación C: N.	
	15:1 – 35:1 Rango ideal			
<15:1	Exceso de nitrógeno	cantidad de material rico en	Adición de material con mayor contenido en carbono (restos de poda, hojas secas, aserrín)	

Tamaño de partícula

La actividad microbiana está relacionada con el tamaño de la partícula, esto es, con la facilidad de acceso al sustrato. Si las partículas son pequeñas, hay una mayor superficie específica, lo cual facilita el acceso al sustrato. El tamaño ideal de los materiales para comenzar el compostaje es de 5 a 20 cm.


La densidad del material, y por lo tanto la aireación de la pila o la retención de humedad, están estrechamente relacionados con el tamaño de la partícula, siendo la densidad aproximadamente 150 - 250 kg/m³, conforme avanza el proceso de compostaje, el tamaño disminuye y, por tanto, la densidad aumenta, 600-700 kg/m³.

CONTROL DEL TAMAÑO DE PARTÍCULA			
Tamaño de la partículas (c			
>30 cm	Exceso de aireaci	Los materiales de gran tamaño cre canales de aireación que hacen baj temperatura y desaceleran el proc	tamaño medio de 10-20 cm.
		5 a 30 cm Rango ideal	
< 5 cm	Compactación	Las partículas demasiado finas cre poros pequeños que se llenan de ag facilitando la compactación del material y un flujo restringido del a produciéndose anaerobiosis.	Volear y/o añadir material de tamaño mayor y volteos para

Tamaño de la pila o volumen en compostaje

En el caso del compostaje en pilas, el tamaño de la pila, en especial la altura, afecta directamente al contenido de humedad, de oxígeno y la temperatura. Pilas de baja altura y de base ancha, a pesar de tener buena humedad inicial y buena relación C: N, hacen que el calor generado por los microorganismos se pierda fácilmente, de tal forma que los pocos grados de temperatura que se logran, no se conservan. El tamaño de una pila viene definido por la cantidad de material a compostar y el área disponible para

realizar el proceso. Normalmente, se hacen pilas de entre 1,5 y 2 metros de alto para facilitar las tareas de volteo, y de un ancho de entre 1,5 y 3 metros. La longitud de la pila dependerá del área y del manejo.

En el momento de estimar las dimensiones de la pila de compostaje, se debe tener en cuenta que, durante el proceso de compostaje, la pila disminuye de tamaño (hasta un 50% en volumen) debido en parte a la compactación y en parte a la pérdida de carbono en forma de CO2.

De igual forma dependiendo del temporal, la misma puede ser humedecida hasta en un 50 % de su peso con aguas de proceso o vinazas.

Parámetro	Rango ideal al comienzo (2-5 días)	Rango ideal para compost en fase termofílica II (2-5 semanas)	Rango ideal de compost maduro (3-6 meses)
C: N	25:1 – 35:1	15/20	1:1 - 15:1
Humedad	50% - 60%	45% - 55%	
Concentración de oxígeno	~ 10%	~ 10%	~ 10%
Tamaño de partícula	< 25 cm	~ 15 cm	< 1.6 cm
рН	6.5 - 8	6.0 - 8.5	6.5 - 8.5
Temperatura	45 - 60 °C	45°C – Temp. ambiente	Temp. ambiente
Densidad	250 - 400 kg/m ³	< 700 kg/m ³	< 700 kg/m ³
Materia orgánica (Base seca)	50%-70%	> 20%	> 20%
Nitrógeno total (Base seca)	2.5 – 3%	1-2%	~ 1%

De conformidad con el carácter público del recurso hídrico, la explotación, uso o aprovechamiento de las aguas nacionales se realizará mediante concesión o asignación otorgada por el Ejecutivo Federal a través de la CONAGUA.

La Ley de Aguas Nacionales establece que para otorgar los títulos de concesión o asignación se tomará en cuenta la disponibilidad media anual de agua de la cuenca hidrológica o acuífero en el que se vaya a realizar el aprovechamiento. La CONAGUA tiene la obligación de publicar dichas disponibilidades, para lo cual generó la norma NOM-011-CNA-2000 "Conservación del recurso agua, que establece las especificaciones y el método para determinar la disponibilidad media anual de las aguas nacionales"

El método que establece la NOM indica que para calcular la disponibilidad de aguas subterráneas deberá de realizarse un balance de las mismas, donde se defina de manera precisa la recarga de los acuíferos, y

de ésta deducir los volúmenes comprometidos con otros acuíferos, la demanda de los ecosistemas y los usuarios registrados con derechos vigentes en el Registro Público de Derechos del Agua (REPDA).

El cálculo de la disponibilidad obtenida permitirá una mejor administración del recurso hídrico subterráneo ya que el otorgamiento de nuevas concesiones sólo podrá efectuarse en acuíferos con disponibilidad de agua subterránea. Los datos técnicos que se publiquen deberán estar respaldados por un documento en el que se sintetice la información necesaria, en donde quede claramente especificado el balance de aguas subterráneas y la disponibilidad de agua subterránea susceptible de concesionar, considerando los volúmenes comprometidos con otros acuíferos, la demanda de los ecosistemas y los usuarios registrados con derechos vigentes en el REPDA. La publicación de la disponibilidad servirá de sustento legal para fines de administración del recurso, en la autorización de nuevos aprovechamientos de agua subterránea, en los planes de desarrollo de nuevas fuentes de abastecimiento, y en las estrategias para resolver los casos de sobreexplotación de acuíferos y la resolución de conflictos entre usuarios.

Localización de región hidrológica.

El municipio de Atotonilco el Alto de acuerdo con la Comisión Nacional del Agua (CONAGUA, 2014) se encuentra en la Región Hidrológica Administrativa VIII Lerma-Santiago-Pacífico; Región Hidrológica 12 Lerma – Santiago; Zona Hidrológica Lerma - Chapala en las Cuencas Hidrológicas Río Zula y Río Lerma 7.

MUNICIPIO DE ATOTONILCO EL ALTO Tototian Atotonico el Alto Gendere Simbología La Barca Noz 200'W Noz 200

Localización del municipio de Atotonilco el Alto, Jalisco.

Precipitación media anual

Según el (SIEG, 2014) la Precipitación Media Anual del municipio es de 900 mm.

Imagen precipitación media anual CEA 2022.

Hidrografía.

Al municipio lo riegan principalmente dos corrientes: el río de Los Sabinos o Zula y el río El Taretan. Los arroyos de caudal en tiempos de lluvia son: El Junco, Las Ánimas, El Sopial, Arroyo Seco, Soledad y Refugio. Para el riego de las planicies se utilizan las presas El Embudo, del Valle, El Tigre, El Castillo, San Joaquín, Pajaritos y La Estancia.

HIDROGRAFÍA DEL MUNICIPIO DE ATOTONILCO EL ALTO.

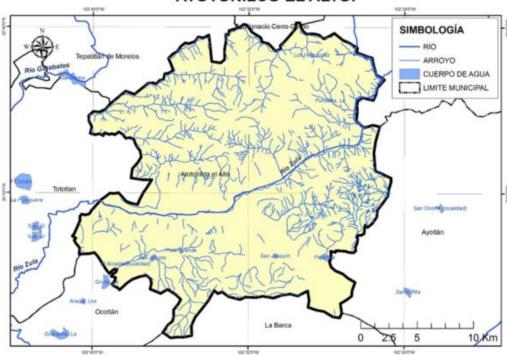


Imagen hidrografía CEA 2022.

Cuenca hidrología del municipio.

El municipio de Atotonilco el Alto de acuerdo con la Comisión Nacional del Agua (CONAGUA, 2014) se encuentra en la Región Hidrológica Administrativa VIII Lerma-Santiago-Pacífico; Región Hidrológica 12 Lerma – Santiago; Zona Hidrológica Lerma - Chapala en las Cuencas Hidrológicas Río Zula y Río Lerma 7.

CUENCAS HIDROLÓGICAS DEL MUNICIPIO DE ATOTONILCO EL ALTO.

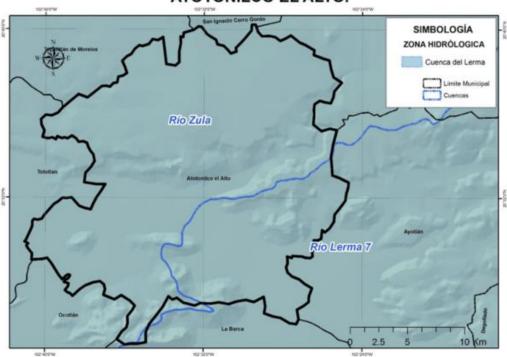


Imagen cuencas hidrológicas CEA 2023.

Ocupación territorial de las cuencas en el municipio.

La Cuenca Hidrológica Río Zula ocupa el 74.97 % del total del territorio municipal; y Río Lerma 7 el 25.03 % restante.

EN EL MUNICIPIO DE ATOTONILCO EL ALTO (%) SIMBOLOGÍA LIMITE DE CUENCA LIMITE MUNICIPAL RIO LERMA 7 24.93 % Ocustán La flaros O 2.5 5 10 Km

OCUPACIÓN TERRITORIAL DE LAS CUENCAS HIDROLÓGICAS

Imagen de ocupación territorial, CEA 2023.

Disponibilidad de aguas superficiales.

En el estado de Jalisco se encuentra incidido por 68 Cuencas Hidrológicas de las cuales; 6 tienen disponibilidad, 54 están en veda y 8 no tienen disponibilidad (CONAGUA; 2014).

Para efectos de Publicación de Disponibilidad de Aguas Superficiales de cuencas hidrológicas del país en el DOF (Diario Oficial de la Federación) la CONAGUA (Comisión Nacional del Agua) considera:

Disponibilidad en aquellas cuencas que existe un volumen disponible de aguas superficiales para otorgar nuevas concesiones por parte de la CONAGUA.

Sin Disponibilidad aquellas cuencas en la que existe un déficit de aguas superficiales por lo que no hay volumen de agua para otorgar nuevas concesiones.

Zona de **Veda** Aquellas áreas específicas de las regiones hidrológicas, cuencas hidrológicas o acuíferos, en las cuales no se autorizan aprovechamientos de agua adicionales a los establecidos legalmente y éstos se controlan mediante reglamentos específicos, en virtud del deterioro del agua en cantidad o calidad, por la afectación a la sustentabilidad hidrológica, o por el daño a cuerpos de agua superficiales o subterráneos.

La Cuenca Hidrológica **Río Zula**, de acuerdo con la publicación en el DOF (2010) tiene una superficie de aportación de 2,125.36 kilómetros cuadrados, y se ubica en la parte Centro Oeste del país, que se encuentra delimitada al Norte y Oeste por la cuenca hidrológica del Río Santiago, al Sur por la cuenca hidrológica Río Lerma 7, y al Este por la cuenca hidrológica Río Turbio. Actualmente cuenta con un volumen disponible a la salida de 0.00 Mm3, es decir, **sin disponibilidad**.

La Cuenca Hidrológica **Río Lerma 7**, de acuerdo con la publicación en el DOF (2010) tiene una superficie de aportación de 6,306.15 kilómetros cuadrados, y se ubica en la parte Centro Oeste del país, que se encuentra delimitada al Norte por la cuenca hidrológica Río Zula y por la cuenca hidrológica del Río Santiago, al Sur

por la regiones hidrológicas números 16 Armería-Coahuayana y 18 Balsas, al Este por las cuencas hidrológicas Río Turbio, Río Lerma 6 y Río Duero, y al Oeste por la cuenca hidrológica del Río Santiago. Actualmente cuenta con un volumen disponible a la salida de 0.00 Mm3, es decir, **sin disponibilidad**.

MUNICIPIO DE ATOTONILCO EL ALTO. SIMBOLOGÍA CONDICIÓN DE DISPONIBILIDAD PUBLICADA EN DIARIO OFICIAL DE LA FEDERACIÓN. Disponibilidad Veda Veda Limite de Atotonico el alto. Limite Municipal

DISPONIBILIDAD DE AGUAS SUPERFICIALES DEL MUNICIPIO DE ATOTONILCO EL ALTO.

Imagen disponibilidad de aguas superficiales CEA 2023.

Agua subterránea.

Se refiera a Acuífero a cualquier formación geológica o conjunto de formaciones geológicas hidráulicamente conectados entre sí, por las que circulan o se almacenan aguas del subsuelo que pueden ser extraídas para su explotación, uso o aprovechamiento y cuyos límites laterales y verticales se definen (Ley de Aguas Nacionales, 2013).

Para fines de administración del Agua Subterránea, el país se ha dividido en 653 Acuíferos, cuyos nombres oficiales fueron publicados en el Diario Oficial de la Federación (DOF) el 20 de abril de 2015 y de acuerdo con la CONAGUA (2015), actualmente 202 están sobreexplotados.

Dentro de los límites del estado de Jalisco, se identifican un total de 59 acuíferos y de acuerdo con la última publicación del DOF el 20 de diciembre de 2015, de estos 59; 26 están sobreexplotados y 33 sub-explotados (DOF; 2015).

Para efectos de Publicación de Disponibilidad de Aguas Subterráneas en acuíferos del país, el Diario Oficial de la Federación considera:

Sub-explotados aquellos acuíferos en los que existe un volumen disponible de aguas subterráneas para nuevas concesiones por parte de la CONAGUA.

Sobre-explotados aquellos acuíferos en los que no existe un volumen disponible de aguas subterráneas para nuevas concesiones por parte de la CONAGUA.

El municipio de Atotonilco el Alto se encuentra en los Acuíferos Ocotlán y La Barca, los cuales se encuentran localizados al Oriente del Estado de Jalisco.

Ocupación territorial de los acuíferos en el municipio.

El Acuífero Ocotlán ocupa el 76.11 % del total del territorio municipal; mientras que el acuífero La Barca ocupa el 23.89 % restante.

OCUPACIÓN TERRITORIAL DE LOS ACUÍFEROS EN EL MUNICIPIO DE ATOTONILCO EL ALTO (%)

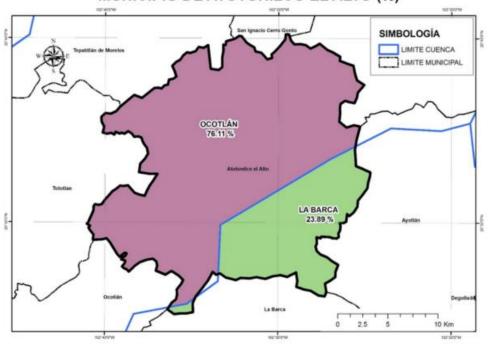


Imagen ocupación territorial de los acuíferos CEA 2023.

Usos del agua subterránea.

Según el Registro Público de Derechos de Agua (REPDA; 2013, 07) de la CONAGUA existen 378 aprovechamientos de Aguas Subterráneas en el municipio de Atotonilco el Alto, los cuales se clasifican de la siguiente manera:

Uso	Cantidad	Volumen (Mm3)	% (Volumen
Acuacultura	1	0.105	0.40
Agrícola	260	23.0954068	88.29
Doméstico	6	0.0045435	0.02
Industrial	12	1.12234	4.29
Pecuario	18	0.0863015	0.33
Público Urbano	78	1.68872249	6.46
Servicios	3	0.055825	0.21
Total	378	26.158139	100.00

Tabla de aprovechamientos de agua subterránea, CEA 2022.

Disponibilidad de aguas subterráneas.

De acuerdo con el procedimiento establecido en la Norma Oficial Mexicana NOM-011-CNA-2000, la Disponibilidad Media Anual de Aguas Subterráneas (1), se obtiene de restar al Volumen de Recarga Total Media Anual (2), el valor de la Descarga Natural Comprometida (3) y el Volumen de Aguas Subterráneas Concesionado e Inscrito en el REPDA (4): DAS(1) = RECARGA(2) – DNC(3) – REPDA(4).

Acuífero Ocotlán: -10.881366 Mm3 /año (CONAGUA; 2015):

DAS = RECARGA - DNC - REPDA

DAS = 85.6 - 8.3 - 88.181366 = -10.881366 Mm³/año

El resultado indica que existe un déficit de aguas subterráneas de -10.881366 Mm³ por año, por lo que actualmente no existe volumen disponible para nuevas concesiones.

Acuífero La Barca: -39.175298 Mm3 /año (CONAGUA; 2015):

DAS = RECARGA - DNC - REPDA

DAS = $67.0 - 2.8 - 103.415298 = -39.175298 \text{ Mm}^3/\alpha \tilde{n}o$

El resultado indica que existe un déficit de aguas subterráneas de -39.175298 Mm³ por año, por lo que actualmente no existe volumen disponible para nuevas concesiones.

DISPONIBILIDAD DE AGUAS SUBTERRÁNEA DEL MUNICIPIO DE ATOTONILCO EL ALTO.

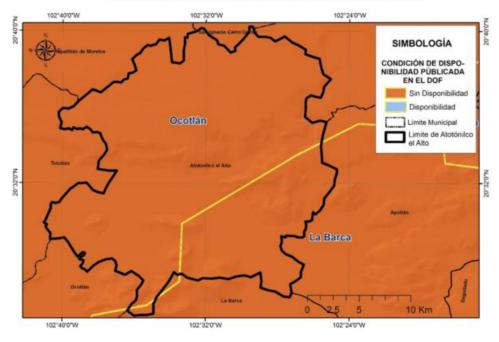


Imagen disponibilidad de aguas subterráneas CEA 2023.

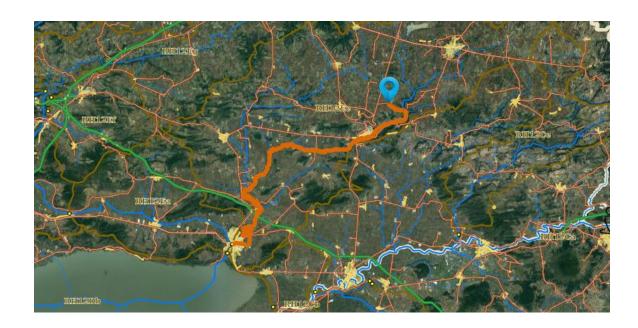
Seleccionar el periodo de retorno

Considerando las recomendaciones dadas por la Subdirección General Técnica de la Comisión Nacional del Agua (CONAGUA), se empleará en el presente estudio, para la modelación de la tormenta de diseño y de las obras hidráulicas de control de escurrimientos necesarias, el Periodo de Retorno **Tr** de 100 años.

Precipitación e Intensidad Pluvial

La Precipitación P y la Intensidad Pluvial I se obtendrán a partir de los registros anuales de las Lluvias Máximas Diarias PD proporcionados por la Estación Climatológica No. 14090 ubicada en el municipio de Tototlán, Jalisco.

Empleando, como ya se dijo sus datos del periodo comprendido del año 1981 al 2020; los cuales se analizarán con las Fórmulas de Chen y de Bell, Como se muestra a continuación.


Duración de lluvia.

Datos de lluvia con retorno de 100 años, SIATL 2023.

Corriente agua arriba datos de SIATL.

Corrientes aguas abajo datos de SIATL

Clave de subcuenca	RH12Ee
Nombre de subcuenca	R. Zula
Tipo	Exorreica
Área en km	1817.24
Elevación máxima de corriente principal (m)	2248
Elevación mínima de corriente principal (m)	1530
Pendiente de corriente principal (%)	0.541

Dado que las Precipitaciones **Ppt** antes mostradas para cada Periodo de Retorno **Tr** están basadas en Precipitaciones Diarias PD, será necesario ajustarlas a Precipitaciones a las 24 horas P_{24} , de la manera siguiente:

$$P_{24} = PD * 1.13$$

De esta manera la Precipitación ajustada a las 24 horas P_{24} (que en lo subsecuente identificaremos solo como P) para el siguiente Periodo de Retorno Tr nos queda de:

Tabla de la Precipitación Máxima (mm) Ajustada a 24 horas

Periodo de Retorno, Tr	Precipitación Máxima Diaria de la Estación Climatológica, PD	Precipitación Máxima ajustada a 24 horas P
100	122.94	138.92

En seguida, mediante la **Fórmula de Bell** se calculará la Intensidad I que tendrá la lluvia a los 60 minutos de su inicio. Y mediante la **Fórmula de Chen** se comprobará la congruencia de ese resultado obtenido; como se muestra a continuación:

Para **la Fórmula de Bell**, la Precipitación **P** que se tendrá al Tiempo \mathbf{t} en minutos y al Periodo de Retorno $T\mathbf{r}$ está representada por Pt Tr , y está dada por la siguiente relación para un tiempo \mathbf{t} de 60 minutos, para un Periodo de Retorno $T\mathbf{r}$ de 100 años:

Pt
Tr
 = (0.54 * t $^{0.25}$ - 0.50) (0.21 * ln (Tr) + 0.52) P_{60}^{100}

Relación con la que si empleamos para el Periodo de Retorno **Tr** de 100 años la Precipitación Máxima al Tiempo **t** de 1,440 minutos (ya conocida) podemos obtener la Precipitación **P** al Tiempo **t** de 60 minutos:

$$P_{60}^{100} = P_{1,440}^{100} / ((0.54 * 1,440 ^{0.25} - 0.50) (0.21 * (ln (100)) + 0.52))$$

= 102.33 / ((2.8264) (1.4871))
= 24.3 mm

Con el valor de Precipitación P anterior, podremos ahora ya conocer la Intensidad ${\bf I}$ que se tendrá al Tiempo de interés ${\bf Tc}$ de 60 minutos, para el Periodo de Retorno ${\bf Tr}$ de 100 años, de la manera siguiente:

$$I_{to}^{Tr} = (P * 60) / tc$$
 $I_{60}^{100} = (24.3 * 60) / 60$
 $= 24.3 \text{ mm/h}$

Y solo para evaluar la congruencia del resultado antes obtenido, se despejará la Intensidad i para el mismo Periodo de Retorno **Tr** de **100 años**, pero ahora con la **Fórmula de Chen**, vista a continuación:

it Tr =
$$(a P_1)^{100} \log (10^{2-F} Tr^{F-1})/(t+b)^{\circ}$$

En la que P1 ¹⁰⁰ es la Precipitación a los 60 minutos (1 hora) del Periodo de Retorno **Tr** de 100 años. Y la Relación Lluvia-Frecuencia F está dada por el cociente de las Precipitaciones P dadas a las 24 horas de los Periodos de Retorno Tr de 100 años de la siguiente manera:

$$F = P_{24}^{100} / P_{24}^{100}$$
$$F = 138.92 / 138.92$$

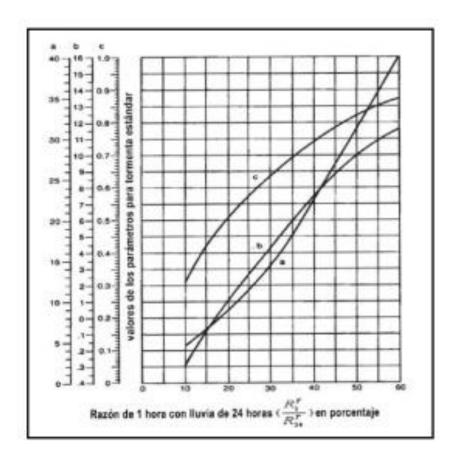
Y la Razón **R** (en porcentaje) de la lluvia de 1 hora con la de 24 horas (en milímetros) para el Periodo de Retorno **Tr** de 100 años está dada por:

$$R = _{P1}^{100} / P_{24}^{100}$$

$$R = 24.3 / 138.92$$

$$= 0.1749 (17.49\%)$$

Pudiéndose ver los valores de los parámetros **a, b y c** en la siguiente tabla.


Los cuales son \mathbf{a} = 12.05, \mathbf{b} = 2.75, y \mathbf{c} = 0.58. Mismos que aplicados con la Fórmula de Chen, para conocer la Intensidad I de la lluvia al Tiempo de Concentración \mathbf{Tc} de $\mathbf{60}$ minutos, para el Periodo de Retorno \mathbf{Tr} de 100 años, se obtiene de:

$$i_{60}^{100} = (\mathbf{a}^* I_{60}^{100*} \log (10^{2-F} * 10^{F-1}) / (60 + \mathbf{b})^{\circ}$$

$$i_{60}^{100} = (12.05 * 24.3 * \log (10^{2-1} * 10^{1-1}) / (60 + 2.75)^{0.58}$$

$$= 26.54 \text{ mm/h}$$

Los cuales están dados por (Campos-Aranda, 2010): a por: -2.297536 + 100.0389 R - 432.5438 R2 +1256.228 R3 - 1028.902 R4 , b por: -9.845761 + 96.94864 R - 341.4349 R2 + 757.9172 R3 - 598.7461 R4 , y c por: -0.06498345 + 5.069294 R - 16.08111 R2 + 29.09596 R3 - 20.06288 R4

Relación entre los parámetros (a, b, c) de una tormenta estándar y la razón de la lluvia de una hora con la de 24 horas (Chen, 1969).

Y dado que las lluvias suelen ser menos intensas conforme aumenta el Área **A** de captación, se empleará el Factor de Reducción **Fr** recomendado para la Fórmula de **Chen** siguiente; en el cual **D** es la duración de interés de la lluvia (en horas) (1 hora = 60 minutos), y **A** es el Área de la microcuenca en estudio (en kilómetros cuadrados) de **1817.24** km². Para quedar como sigue:

$$Fr = 1.0 - 0.3549 * D^{-0.42723} * (1.0 - e^{-0.005794 * A})$$

$$Fr = 1.0 - 0.3549 * 1.0^{-0.42723} * (1.0 - e^{-0.005794 * 1817.24})$$

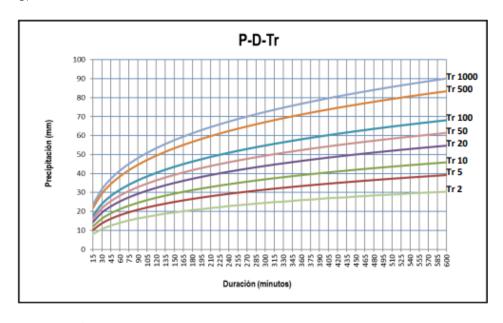
Fr = 0.8484

Por lo que la Intensidad **I** obtenida para el Periodo de Retorno **Tr** de 100 años con la Fórmula de **Chen**, ya corregida con el Factor de Reducción **Fr** queda de:

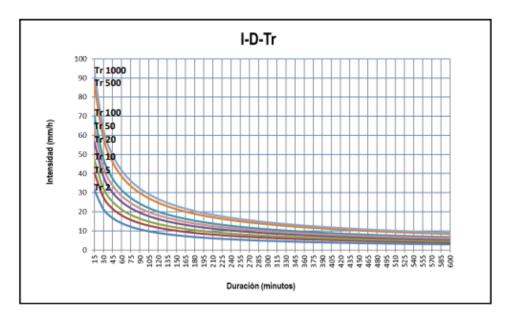
$$i_{60}^{100} = (0.8484 * 26.54)$$

 $i_{60}^{100} = 22.52 \text{ mm/h}$

Una vez demostrada la congruencia de los resultados obtenidos con las Fórmulas de Bell y de Chen, en lo subsecuente se emplearán los valores de 25.41 mm para la Precipitación P10 y de 21.56 mm/h para la Intensidad I10 correspondientes al Periodo de Retorno Tr de 100 años, por ser los parámetros que mejor describen a las lluvias que ocurren al menos una vez cada 100 años en promedio, en la microcuenca de estudio, a los 60 minutos de su inicio.


Parámetro	Tr 100 años						
Intensidad (mm/h)	22.52						
Precipitación	26.54						

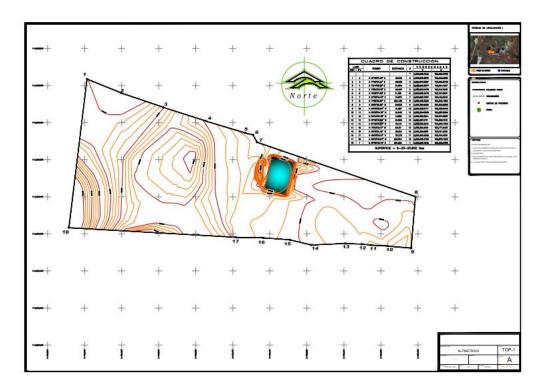
En seguida se pueden ver en forma de tabla y de gráficas, las Intensidades ${f I}$ y Precipitaciones ${f P}$ de las lluvias en la Microcuenca de estudio, conforme a sus distintas Duraciones ${f D}$ y Periodos de Retorno ${f Tr}$


Tabla de la Intensidad-Precipitación-Duración-Periodo de Retorno

Tr	D	1	Р	Tr	D	1	P	Tr	D	1	Р	Tr	D	1	P	Tr	D	1	P												
2	15	31.5	7.9	5	15	40.6	10.2	10	15	47.5	11.9	25	15	56.7	14.2	50	15	63.6	15.9	100	15	70.4	17.6	500	15	86.5	21.6	1000	15	93.4	23.3
2	30	21.4	10.7	5	30	27.6	13.8	10	30	32.3	16.1	25	30	38.5	19.2	50	30	43.1	21.6	100	30	47.8	23.9	500	30	58.7	29.3	1000	30	63.4	31.7
2	45	16.8	12.6	5	45	21.6	16.2	10	45	25.3	19.0	25	45	30.2	22.6	50	45	33.8	25.4	100	45	37.5	28.1	500	45	46.0	34.5	1000	45	49.7	37.3
2	60	14.0	14.0	5	60	18.1	18.1	10	60	21.2	21.2	25	60	25.2	25.2	50	60	28.3	28.3	100	60	31.4	31.4	500	60	38.5	38.5	1000	60	41.6	41.6
2	75	12.2	15.3	5	75	15.7	19.7	10	75	18.4	23.0	25	75	21.9	27.4	50	75	24.6	30.8	100	75	27.3	34.1	500	75	33.5	41.8	1000	75	36.1	45.2
2	90	10.9	16.3	5	90	14.0	21.0	10	90	16.4	24.6	25	90	19.5	29.3	50	90	21.9	32.8	100	90	24.3	36.4	500	90	29.8	44.7	1000	90	32.2	48.2
2	105	9.8	17.2	5	105	12.7	22.2	10	105	14.8	25.9	25	105	17.7	30.9	50	105	19.8	34.7	100	105	22.0	38.5	500	105	27.0	47.2	1000	105	29.1	51.0
2	120	9.0	18.0	5	120	11.6	23.2	10	120	13.6	27.2	25	120	16.2	32.4	50	120	18.2	36.3	100	120	20.1	40.3	500	120	24.7	49.4	1000	120	26.7	53.4
2	135	8.3	18.8	5	135	10.8	24.2	10	135	12.6	28.3	25	135	15.0	33.7	50	135	16.8	37.9	100	135	18.6	42.0	500	135	22.9	51.5	1000	135	24.7	55.6
2	150	7.8	19.5	5	150	10.0	25.1	10	150	11.7	29.4	25	150	14.0	35.0	50	150	15.7	39.2	100	150	17.4	43.5	500	150	21.4	53.4	1000	150	23.1	57.6
2	165	7.3	20.1	5	165	9.4	25.9	10	165	11.0	30.3	25	165	13.1	36.1	50	165	14.7	40.5	100	165	16.3	44.9	500	165	20.0	55.1	1000	165	21.6	59.5
2	180	6.9	20.7	5	180	8.9	26.7	10	180	10.4	31.2	25	180	12.4	37.2	50	180	13.9	41.7	100	180	15.4	46.3	500	180	18.9	56.8	1000	180	20.4	61.3
2	195	6.5	21.3	5	195	8.4	27.4	10	195	9.9	32.1	25	195	11.8	38.2	50	195	13.2	42.9	100	195	14.6	47.5	500	195	17.9	58.3	1000	195	19.4	63.0
2	210	6.2	21.8	5	210	8.0	28.1	10	210	9.4	32.9	25	210	11.2	39.2	50	210	12.5	43.9	100	210	13.9	48.7	500	210	17.1	59.8	1000	210	18.4	64.5
2	225	5.9	22.3	5	225	7.7	28.7	10	225	9.0	33.6	25	225	10.7	40.1	50	225	12.0	44.9	100	225	13.3	49.8	500	225	16.3	61.1	1000	225	17.6	66.0
2	240	5.7	22.8	5	240	7.3	29.4	10	240	8.6	34.3	25	240	10.2	40.9	50	240	11.5	45.9	100	240	12.7	50.9	500	240	15.6	62.4	1000	240	16.9	67.4
2	255	5.5	23.2	5	255	7.0	29.9	10	255	8.2	35.0	25	255	9.8	41.7	50	255	11.0	46.8	100	255	12.2	51.9	500	255	15.0	63.7	1000	255	16.2	68.8
2	270	5.3	23.7	5	270	6.8	30.5	10	270	7.9	35.7	25	270	9.4	42.5	50	270	10.6	47.7	100	270	11.7	52.9	500	270	14.4	64.9	1000	270	15.6	70.1
2	285	5.1	24.1	5	285	6.5	31.0	10	285	7.6	36.3	25	285	9.1	43.3	50	285	10.2	48.5	100	285	11.3	53.8	500	285	13.9	66.0	1000	285	15.0	71.3
2	300	4.9	24.5	5	300	6.3	31.6	10	300	7.4	36.9	25	300	8.8	44.0	50	300	9.9	49.3	100	300	10.9	54.7	500	300	13.4	67.1	1000	300	14.5	72.5
2	315	4.7	24.9	5	315	6.1	32.1	10	315	7.1	37.5	25	315	8.5	44.7	50	315	9.5	50.1	100	315	10.6	55.6	500	315	13.0	68.2	1000	315	14.0	73.6
2	330	4.6	25.2	5	330	5.9	32.5	10	330	6.9	38.1	25	330	8.2	45.3	50	330	9.2	50.9	100	330	10.3	56.4	500	330	12.6	69.2	1000	330	13.6	74.7
2	345	4.5	25.6	5	345	5.7	33.0	10	345	6.7	38.6	25	345	8.0	46.0	50	345	9.0	51.6	100	345	9.9	57.2	500	345	12.2	70.2	1000	345	13.2	75.8
2	360	4.3	25.9	5	360	5.6	33.4	10	360	6.5	39.1	25	360	7.8	46.6	50	360	8.7	52.3	100	360	9.7	58.0	500	360	11.9	71.1	1000	360	12.8	76.8
2	375	4.2	26.3	5	375	5.4	33.9	10	375	6.3	39.6	25	375	7.6	47.2	50	375	8.5	53.0	100	375	9.4	58.7	500	375	11.5	72.1	1000	375	12.5	77.8
2	390	4.1	26.6	5	390	5.3	34.3	10	390	6.2	40.1	25	390	7.4	47.8	50	390	8.3	53.6	100	390	9.1	59.5	500	390	11.2	73.0	1000	390	12.1	78.8
2	405	4.0	26.9	5	405	5.1	34.7	10	405	6.0	40.6	25	405	7.2	48.4	50	405	8.0	54.3	100	405	8.9	60.2	500	405	10.9	73.8	1000	405	11.8	79.7
2	420	3.9	27.2	5	420	5.0	35.1	10	420	5.9	41.1	25	420	7.0	48.9	50	420	7.8	54.9	100	420	8.7	60.9	500	420	10.7	74.7	1000	420	11.5	80.7
2	435	3.8	27.5	5	435	4.9	35.5	10	435	5.7	41.5	25	435	6.8	49.5	50	435	7.7	55.5	100	435	8.5	61.5	500	435	10.4	75.5	1000	435	11.2	81.5
2	450	3.7	27.8	5	450	4.8	35.9	10	450	5.6	42.0	25	450	6.7	50.0	50	450	7.5	56.1	100	450	8.3	62.2	500	450	10.2	76.3	1000	450	11.0	82.4
2	465	3.6	28.1	5	465	4.7	36.3	10	465	5.5	42.4	25	465	6.5	50.5	50	465	7.3	56.7	100	465	8.1	62.8	500	465	10.0	77.1	1000	465	10.7	83.3
2	480	3.6	28.4	5	480	4.6	36.6	10	480	5.4	42.8	25	480	6.4	51.0	50	480	7.2	57.2	100	480	7.9	63.5	500	480	9.7	77.9	1000	480	10.5	84.1
2	495	3.5	28.7	5	495	4.5	37.0	10	495	5.2	43.2	25	495	6.2	51.5	50	495	7.0	57.8	100	495	7.8	64.1	500	495	9.5	78.6	1000	495	10.3	84.9
2	510	3.4	28.9	5	510	4.4	37.3	10	510	5.1	43.6	25	510	6.1	52.0	50	510	6.9	58.3	100	510	7.6	64.7	500	510	9.3	79.4	1000	510	10.1	85.7
2	525	3.3	29.2	5	525	4.3	37.6	10	525	5.0	44.0	25	525	6.0	52.5	50	525	6.7	58.9	100	525	7.5	65.3	500	525	9.2	80.1	1000	525	9.9	86.5
2	540	3.3	29.5	5	540	4.2	38.0	10	540	4.9	44.4	25	540	5.9	52.9	50	540	6.6	59.4	100	540	7.3	65.8	500	540	9.0	80.8	1000	540	9.7	87.2
2	555	3.2	29.7	5	555	4.1	38.3	10	555	4.8	44.8	25	555	5.8	53.4	50	555	6.5	59.9	100	555	7.2	66.4	500	555	8.8	81.5	1000	555	9.5	88.0
2	570	3.2	30.0	5	570	4.1	38.6	10	570	4.8	45.2	25	570	5.7	53.8	50	570	6.4	60.4	100	570	7.0	66.9	500	570	8.6	82.1	1000	570	9.3	88.7
2	585	3.1	30.2	5	585	4.0	38.9	10	585	4.7	45.5	25	585	5.6	54.3	50	585	6.2	60.9	100	585	6.9	67.5	500	585	8.5	82.8	1000	585	9.2	89.4
2	600	3.0	30.4	5	600	3.9	39.2	10	600	4.6	45.9	25	600	5.5	54.7	50	600	6.1	61.3	100	600	6.8	68.0	500	600	8.3	83.5	1000	600	9.0	90.1

Donde: Periodo de Retorno Tr en años, Duración D en minutos, Intensidad I en mm/h, Precipitación P en mm. A partir de la **Fórmula de Bell**, para una Precipitación de 26.54 mm en 1 hora con un periodo de retorno de 100 años P_1 1^{00} , y una Precipitación de 122.94 mm en 24 horas con un periodo de retorno de 100 años P_{24}^{100}

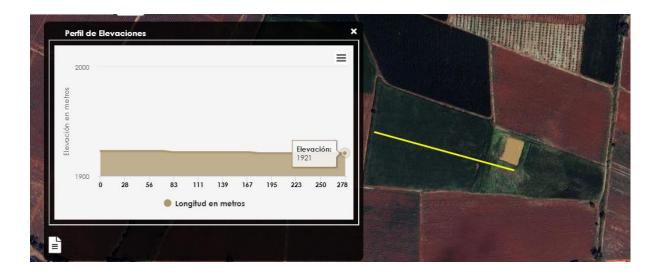
Grafica de Precipitación **P**, Duración **D** y Periodo de Retorno **Tr**.


Grafica de intensidad I, Duración D y Periodo de Retorno Tr.

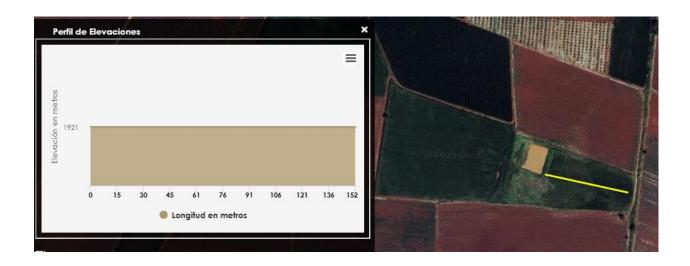
Dirección de los flujos superficiales pluviales

Las dos direcciones de los escurrimientos pluviales que se tendrán en la poligonal del proyecto cumplirán diversas leyes hidráulicas, y aquí se encontró que la fuerza dominante es la que se rige por la fuerza de gravedad. Lo que implica que estos serán direccionados básicamente por sus gradientes hidráulicos. Es decir que estarán direccionados por la topografía del terreno.

Escurrimientos a los que por sus direcciones llamaremos de "Este a Oeste" y "Oeste a Este".


Los cuales se muestran a continuación sobre una imagen del terreno (con sus curvas de nivel) para el proyecto de compostaje.

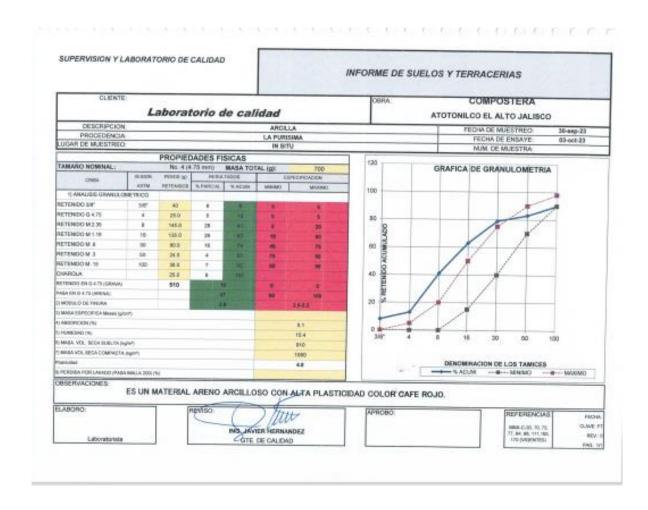
Plano del sitio de composta



Direccion de escorrentias imagen SIG 2023.

Perfil de elevaciones del terreno (dado por su rasante) en su trazo identificando como escurrimiento del Este a Oeste .

Con el que podemos ver que su Pendiente Media (S_{NO}) es de 0.0011, es decir del 1.1%. Que se obtiene de (1,921-1,924) / (278).



Perfil de elevaciones del terreno (dado por su rasante) en su trazo identificando como escurrimiento de Oeste a Este

Con el que podemos ver que su Pendiente Media (\mathbf{S}_{NO}) es de 0.0066, es decir del 0.7%. Que se obtiene de (1,921-1,922) / (152).

Cálculo de la infiltración

Considerando que en las páginas 16 y 17 del Análisis de la Capacidad Permeable (estudio que se anexa) se determinó de 1 x 10^{-7} cm/s el coeficiente de conductividad hidráulica (K) del subsuelo del predio del proyecto, con una textura franco-arcillosa, y considerando el Estudio de Mecánica de Suelos realizado para este proyecto (estudio que se anexa) reportan no haber encontrado el nivel de aguas freáticas hasta la profundidad explorada y que las arcillas (material expansivo) del subsuelo de ahí son de baja plasticidad y de consistencia dura a durísima, es que se consideró al subsuelo del proyecto como "impermeable". Toda vez su tan baja taza de infiltración, al hacer los balances de "precipitación-evaporación-retención-escurrimientos" en el sitio.

Cálculo de la evaporación y de las retenciones

Considerando lo siguiente: Que durante las tormentas (como las aquí modeladas) las tazas de evaporación de agua que se dan (en ese lapso de tiempo) son mínimas o despreciables; que conocer a las Retenciones (R) de los escurrimientos es básicamente para evaluar sus disminuciones y retrasos, sobre todo cuando queremos saber sus Tiempos de Concentración (Tc); y aunado al interés meramente técnico y preventivo que se tiene en el presente estudio, es que se encontró ocioso calcular aquí a estas dos variables hidrológicas (a la evaporación y a la retención de los escurrimientos).

Perfil de los escurrimientos

Considerando que de acuerdo al proyecto (este a su vez de acuerdo con la Norma Mexicana NMX-AA-180-SCFI-2018) sus "pilas estáticas" de composteo no tendrán poco contacto con las lluvias (ya

que no generarán escurrimientos); que los materiales del suelo y subsuelo somero del sitio del proyecto son prácticamente impermeables (arcillosos expansivos); que el sito del proyecto no tendrá afluentes superficiales; y que no tiene influentes subterráneos considerados como de interés, es que los escurrimientos pluviales del proyecto se calcularán como sigue:

La superficie calculada de escurrimiento a la altura del sitio del proyecto está representada de la siguiente manera;

A= Área de escurrimiento máximo a la altura del proyecto

 I_{60}^{100} = Intensidad **I** obtenida para el Periodo de Retorno **Tr** de 100 años.

F =flujo

 $F = (A * I_{60}^{100})/3600$

 $F = (484,790 \text{ m}^2)*(22.52 \text{ mm/h})/(3600)(1000)$

 $F = 0.303 \text{ m}^3/\text{s}$

Sabiendo que el proyecto tendrá que drenar una lámina de 25.41 mm de altura (de agua) h, de acuerdo con la Tabla de la Intensidad y Precipitación mostrada del presente estudio; captada con su Área total A_T de 60,202.0, m^2 , actualmente el predio se encuentra libre de cordones de composta, se estima que solo el 70 % de la precipitación se escurre y el resto se absorbe por el suelo en una hora, AR área real, en un Tiempo t de una hora.

Lo que equivale a un volumen de

 A_T *(0.70) = A_R

 $A_R = 62,020 \text{ m}^2$

 $V = A_R *P/1000$

V = 62.020 * (26.54 / 1.000).

 $V = 1,646 \text{ m}^3$

Siendo este el volumen mínimo de agua a contener, por lo que se diseñara un sistema de captación de escurrimientos de la siguiente manera:

Fosa de captacion de escorrentias y agua pluvial imagen SIG 203.

Ubicación fosas receptoras de aguas pluviales internas y escorrentías

Se cuenta con fosas de captación de escurrimientos la cual será impermeabilizada receptoras de aguas pluviales de una capacidad mínima de 6,000 metros cúbicos con dimensiones de 40x50x3 metros misma que contará con un sistemas de bombeo a pilas de composta de capacidad de 1,000 m³/hora,.

Imagen de fosa de recepción.

Conclusiones

- Se encontró que el proyecto cumple con las distancias mínimas requeridas por la Tabla 2 de la NMX-AA-180-SCFI-2018, salvo la distancia mínima de cuerpo de agua superficial de 100 metros.
- 2. De lo datos obtenidos el flujo máximo de caudal para un tiempo de retorno de 100 años no pone en riesgo de inundaciones al proyecto.
- 3. Con respecto a los parámetros fisicoquímicos y biológicos de la "composta" (del proyecto), se encontró como clave (para su cuidado a los cuerpos de agua cercanos), que mantenga su pH lo más cercano al neutro (7.0). Y si bien el proyecto contempla la instalación de fosas receptoras de escurrimientos para evitar los desbordamientos a cuerpo de agua colindante.
- 4. Se encontró que si bien el proyecto no descargará sus aguas pluviales en cuerpos receptores propiedad de la Nación, estas descargas (toda vez de ser provenientes de los drenajes del proyecto destinados exclusivamente para sus aguas pluviales) no requieren del Permiso de Descarga de Aguas Residuales de la Comisión Nacional del Agua (CONAGUA); de conformidad con el párrafo Tercero del numeral 1 de la actual Norma Oficial Mexicana NOM-001-SEMARNAT-2021 "Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación" (publicada en el Diario Oficial de la Federación el viernes 11 de marzo de 2022).
- 5. Se encontró casi improbable que el proyecto, por su operación, pudiera contaminar a las aguas subterráneas. Siempre y cuando capte a sus lixiviados del composteo en su "fosa de recepción". Esto debido a que el nivel freático de la zona donde se realizaron pruebas, en las que no se encontró algún manto colgado (subterráneo) con las exploraciones realizadas para el proyecto, al material rocoso emplazado entre el proyecto y el acuífero (el cual actúa como acuicludo o aquitardo), y a que los materiales someros del subsuelo del sitio del proyecto son arcillosos expansivos (lo que los vuelve prácticamente impermeables). Características físicas antes mostradas.
- 6. Ligado a lo anterior, se encontró que el subsuelo somero (el que estará en contacto con las actividades del proyecto) presentó un coeficiente de conductividad hidráulica de 1 x 10-7 cm/s (K), el cual cumple con lo dispuesto por el párrafo Segundo del numeral 6.2.3.3 de la Norma Mexicana NMXAA-180-SCFI-2018; por lo que para efectos prácticos y de la propia Norma, este subsuelo puede considerarse como "constituido de materiales impermeables".
- 7. Se encontró que si bien el terreno del proyecto cumple con la pendiente mínima S del 0.5%, requerida por el párrafo Tercero del numeral 6.2.3.3 de la Norma Mexicana NMX-AA-180-SCFI-2018 para evitar encharcamientos en el sitio.

Recomendaciones

1. Si bien el proyecto ya contempla medidas para su cuidado al medio ambiente, a las aguas superficiales y a las aguas subterráneas, se le recomienda al proyecto, en todo momento pero en especial durante su etapa de operación, el cabal cumplimiento a lo dispuesto por la Norma Mexicana NMX-AA-180-SCFI-2018 "Que establece los métodos y procedimientos para el tratamiento aerobio de la fracción orgánica de los residuos sólidos urbanos y de manejo especial, así como la información comercial y de sus parámetros de calidad de los productos finales". Norma que el pasado miércoles 26 de septiembre de 2018 ya fue publicada (en el Diario Oficial de la Federación) como "Vigente". La cual delegó a la Secretaría de Economía, por conducto de la

Procuraduría Federal del Consumidor, la vigilancia de su cumplimiento. Se anexa al presente estudio la Norma y su Declaratoria de vigencia.

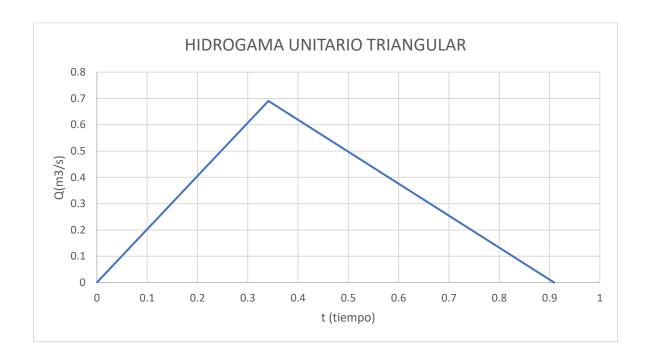
- 2. Si recomienda que el proyecto cumpla con todas las características propuestas en su estudio de impacto ambiental en su modalidad de operación.
- 3. Se recomienda que las "pilas estáticas" y sus "calles" (que quedan entre ellas) se distribuyan de manera longitudinal siguiendo a las mayores pendientes del terreno. indicadas en su plano de distribución presentada en su estudio. Lo que permitirá un mayor y mejor drenado de las aguas pluviales captadas por el proyecto.
- 4. Se recomienda instalar canales de desviación de aguas pluviales para que están no captadas por el proyecto directamente y hacia sus cauces más cercanos (mostrados en el presente estudio). Por supuesto no acapararlas en algún punto, ni mucho menos enviarlas (para su mezclado) hacia la "fosas receptoras de aguas pluviales y escorrentías" del proyecto.
- 5. En virtud de que el sitio del proyecto tiene pendientes S mayores al 3%, contra lo recomendado por el párrafo Tercero del numeral 6.2.3.3 de la Norma Mexicana NMX-AA-180-SCFI-2018, se recomienda evaluar si estas pendientes naturales del terreno no le afectan al proyecto, sobre todo para su operación. Ya que por otro lado sí le favorecen para su drenado de las aguas pluviales. Debiéndose en todo caso nivelar al terreno hasta su pendiente más adecuada (de preferencia no menor al 2%).
- 6. Por último, se le recomienda informar cualquier cambio constructivo u operativo que se le pretenda hacer al proyecto, a fin de que sea evaluado y de ser necesario, se le den (en alcance al presente estudio) las recomendaciones con las que se evite cualquier afectación al agua o al medio ambiente

ATENTAMENTE

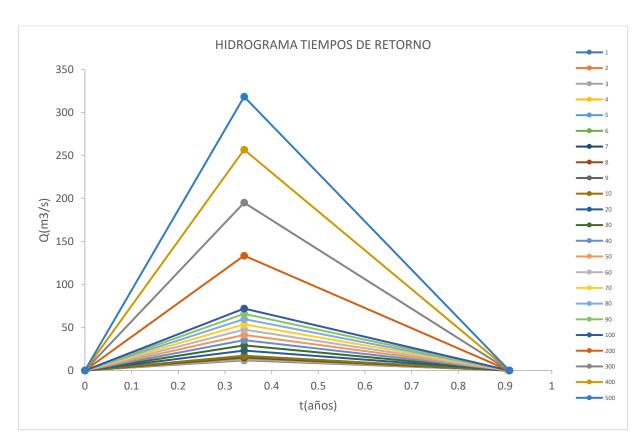
ING. JOSÉ DE JESÚS OLEA PADILLA Cédula profesional 3970939

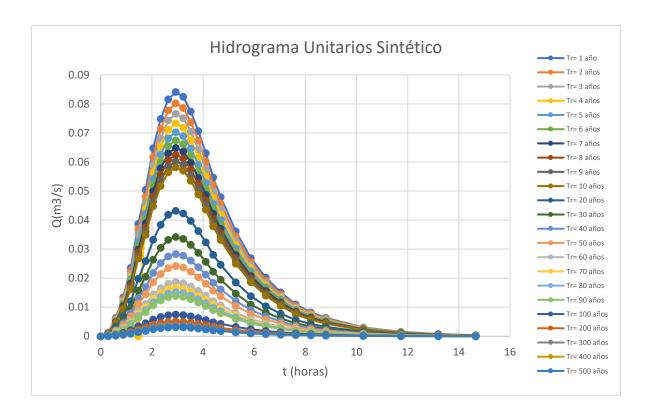
ANEXOS

Cálculo de Tiempo de Retorno


ESTACIÓN CLIMÁTICA 14070 ATOTONILCO EL ALTO							
	LL	UVIA MÁXIMA :	24 HRS				
AÑO	mm	FRECUENCIA	PROBABILIDAD DE RETORNO				
1943	49.5	0.01	79.00				
1944	56.8	0.03	39.50				
1945	30	0.04	26.33				
1946	59	0.05	19.75				
1947	49.5	0.06	15.80				
1948	81.2	0.08	13.17				
1949	46.8	0.09	11.29				
1950	79.1	0.10	9.88				
1951	37.3	0.11	8.78				
1952	105	0.13	7.90				
1953	36	0.14	7.18				
1954	46.8	0.15	6.58				
1955	60	0.16	6.08				
1956	63.5	0.18	5.64				
1957	53.9	0.19	5.27				
1958	63	0.20	4.94				
1959	47.8	0.22	4.65				
1960	55	0.23	4.39				
1961	80	0.24	4.16				
1962	48.2	0.25	3.95				
1963	80.7	0.27	3.76				
1964	44.1	0.28	3.59				
1965	87	0.29	3.43				
1966	49.6	0.30	3.29				
1967	72.2	0.32	3.16				
1968	78	0.33	3.04				
1969	43.7	0.34	2.93				
1970	54.6	0.35	2.82				
1971	70.2	0.37	2.72				
1972	57.6	0.38	2.63				
1973	68.7	0.39	2.55				
1974	57.8	0.41	2.47				
1975	101	0.42	2.39				
1976	90.3	0.43	2.32				
1977	55.8	0.44	2.26				
1978	61.3	0.46	2.19				
1979	48.3	0.47	2.14				
1980	52.23	0.48	2.08				
1981	39.8	0.49	2.03				
1982	31	0.51	1.98				

1983 56.5 0.52 1.93 1984 63 0.53 1.88 1985 40 0.54 1.84 1986 50.5 0.56 1.80 1987 49.7 0.57 1.76 1988 51.3 0.58 1.72 1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 3 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002				
1985 40 0.54 1.84 1986 50.5 0.56 1.80 1987 49.7 0.57 1.76 1988 51.3 0.58 1.72 1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 </td <td>1983</td> <td>56.5</td> <td>0.52</td> <td>1.93</td>	1983	56.5	0.52	1.93
1986 50.5 0.56 1.80 1987 49.7 0.57 1.76 1988 51.3 0.58 1.72 1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005	1984	63	0.53	1.88
1987 49.7 0.57 1.76 1988 51.3 0.58 1.72 1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 </td <td>1985</td> <td>40</td> <td>0.54</td> <td>1.84</td>	1985	40	0.54	1.84
1988 51.3 0.58 1.72 1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 <td>1986</td> <td>50.5</td> <td>0.56</td> <td>1.80</td>	1986	50.5	0.56	1.80
1989 47 0.59 1.68 1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 <td>1987</td> <td>49.7</td> <td>0.57</td> <td>1.76</td>	1987	49.7	0.57	1.76
1990 30 0.61 1.65 1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 </td <td>1988</td> <td>51.3</td> <td>0.58</td> <td>1.72</td>	1988	51.3	0.58	1.72
1991 11.5 0.62 1.61 1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010	1989	47	0.59	1.68
1992 44.5 0.63 1.58 1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 </td <td>1990</td> <td>30</td> <td>0.61</td> <td>1.65</td>	1990	30	0.61	1.65
1993 49 0.65 1.55 1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 <td>1991</td> <td>11.5</td> <td>0.62</td> <td>1.61</td>	1991	11.5	0.62	1.61
1994 68 0.66 1.52 1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013	1992	44.5	0.63	1.58
1995 49 0.67 1.49 1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2	1993	49	0.65	1.55
1996 42.3 0.68 1.46 1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2	1994	68	0.66	1.52
1997 52.4 0.70 1.44 1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2	1995	49	0.67	1.49
1998 75.5 0.71 1.41 1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 201	1996	42.3	0.68	1.46
1999 93 0.72 1.39 2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 201	1997	52.4	0.70	1.44
2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 201	1998	75.5	0.71	1.41
2000 78 0.73 1.36 2001 55.5 0.75 1.34 2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 201	1999	93	0.72	1.39
2002 52.5 0.76 1.32 2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2000	78	0.73	1.36
2003 78.5 0.77 1.30 2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2001	55.5	0.75	1.34
2004 87.5 0.78 1.27 2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2002	52.5	0.76	1.32
2005 42 0.80 1.25 2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2003	78.5	0.77	1.30
2006 33 0.81 1.23 2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2004	87.5	0.78	1.27
2007 43.5 0.82 1.22 2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2005	42	0.80	1.25
2008 57.5 0.84 1.20 2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2006	33	0.81	1.23
2009 55.7 0.85 1.18 2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2007	43.5	0.82	1.22
2010 61 0.86 1.16 2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2008	57.5	0.84	1.20
2011 5.6 0.87 1.14 2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2009	55.7	0.85	1.18
2012 133.2 0.89 1.13 2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2010	61	0.86	1.16
2013 122.5 0.90 1.11 2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2011	5.6	0.87	1.14
2014 66 0.91 1.10 2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2012	133.2	0.89	1.13
2015 48.5 0.92 1.08 2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2013	122.5	0.90	1.11
2016 55 0.94 1.07 2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2014	66	0.91	1.10
2017 82.5 0.95 1.05 2018 75 0.96 1.04 2019 48 0.97 1.03	2015	48.5	0.92	1.08
2018 75 0.96 1.04 2019 48 0.97 1.03	2016	55	0.94	1.07
2019 48 0.97 1.03	2017	82.5	0.95	1.05
	2018	75	0.96	1.04
2020 16.5 0.99 1.01	2019	48	0.97	1.03
	2020	16.5	0.99	1.01


Ecuación para Calcular Tiempos de Retorno Predio La Purisíma



Hidrograma Unitario Triangular Predio La Purísima

Tiempo de retorno	Concentración	Pe	qp
1	24.1044	17.2277321	11.8854124
2	24.9978	18.0711191	12.467265
3	25.8912	18.917332	13.0510673
4	26.7846	19.7661379	13.6366585
5	27.678	20.6173288	14.2238951
6	28.5714	21.4707183	14.8126486
7	29.4648	22.3261391	15.4028034
8	30.3582	23.1834402	15.9942554
9	31.2516	24.0424854	16.5869107
10	32.145	24.9031513	17.1806841
20	41.079	33.5785324	23.1658295
30	50.013	42.3368099	29.2081651
40	58.947	51.1436324	35.283992
50	67.881	59.9813249	41.3811161
60	76.815	68.8398641	47.4926223
70	85.749	77.7131424	53.614297
80	94.683	86.5972257	59.743426
90	103.617	95.4894656	65.8781823
100	112.551	104.388014	72.0172908
200	201.891	193.5413	133.524143
300	291.231	282.806931	195.108502
400	380.571	372.106961	256.716592
500	469.911	461.422005	318.335041

